
Recommendations for XPS softwares 

The excellent paper by G. Leclerc and J.J. Pireaux (J. Electron
Spectroscopy and Related Phenomena, 71(1995)141164, The use of least
squares for XPS peak parameters estimation. Part 1. Myths and realities)
formulates some expectations/recommendations for data evaluation software
in XPS. (The red text is cited from the reference
above. The blue text shows how EWA realizes
the features in question. )
No predefined (i.e. compiletime) model exists. Instead, a freechoice (runtime) model can be built up by the user. A wide range of components of different kind, with component supplements can be selected and several options enriches the possibilities.
In these models each peak is described by four parameters: the binding energy, the peak area, the peak width and the amount of Gaussian (or Lorentzian) contribution. The minimum number of peak parameters is three (for the shapes like Gaussian and Lorentzian), plus the optional asymmetry parameter; for the Voigtapproximations either the G/L mixing or the Gaussian and Lorentzian width are the additional parameters. Although it may seem equivalent to use peak height as a parameter instead of peak area, peak area is much more useful for inference testing and should be preferred. EWA allows its users to chose between these representations during peak creation; although for some peak shapes one or other representation is not allowed. Where possible, the area representation is the default. It is also important for the user to have the possibility of specifying the amount of Gaussian contribution of the peaks as an estimable parameter. For asymmetric peaks, the software should of course include some asymmetric lineshapes, such as DoniacSunjic, Kuchiev or others. There is a generic way of asymmetrizing a distribution, but these asymmetric distributions are also available. For reasons of versatility, the user should also be able to enter his own empirical or theoretical peak shape: it is essential to use all possible means of getting the appropriate peak shape before performing the regression, so as to make the model physically and chemically meaningful.
Any background with estimable parameters should optimally be included in the regression model. In EWA, this is the default. However, the command 'Component Subtract' allows to remove any of the components before performing regression. In all cases at least a constant background should be included in the regression model. All background types include a constant background as an option and it is on by default.
A less strict method of constraining is also implemented: all parameters have a lower and an upper limit, which cannot be exceeded during parameter adjusting or performing regression, even temporarily; but within the allowed range the parameters are free. A constrained parameter is no longer an estimable parameter and should not be taken into account when computing the number of degrees of freedom. This simple case is implemented when the parameter is fixed. However, when calculating the value from some other parameter, either the free or the constrained value should be fixed. 