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Abstract

The inelastic scattering phenomenon of electrons in solids as seen by procedures using the Shirley-type empirical

background is discussed. In close analogy with the Tougaard-type background correction procedure, the inelastic

scattering cross-section function resulting in Shirley-equivalent background is derived. The main value of such a

function––in addition to providing evidence that the Shirley method is based on a reasonable cross-section function––is

in explaining the different energy dependence of both popular methods, especially near to photopeaks. The functional

form of the scattering cross-section function is given, with some intuitively determined parameters. Evaluation methods

based on the derived cross-section function have been implemented and tested. The cross-section based background

calculation method nicely reproduces the results of the classic method and it can be used in generating peak tails, too.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

For practical evaluation of an X-ray photo-

electron spectrum (XPS), Shirley introduced [1] the

first empirical method that successfully solved the

task of deriving the inelastic background for a

peak measured in a relatively narrow energy re-

gion and for the case of a relatively small amount

of inelastic scattering. Much later, Tougaard

introduced [2] his background calculation method
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after assuming that the photoelectrons had a par-

ticular inelastic energy loss cross-section. Thanks
to its simplicity, the Shirley method remained

important (although not any more dominant) even

after the introduction of the Tougaard back-

ground correction method, despite the fact that no

detailed physical interpretation was given for the

empirical procedure. Until now, the type of inelastic

collision cross-section implicitly assumed with use of

the Shirley background correction method is not
known. The present paper discusses the principles

of the Shirley and Tougaard background evalua-

tion methods in close analogy with each other,

provides a derivation of the inelastic cross-section

for the Shirley method.
ed.
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2. Roots of the derived cross-section function

The present approach is based on three ideas:

the original method proposed by Shirley, use of

the inelastic energy-loss cross-section function as
introduced by Tougaard, and analysis of the con-

tributions due to inelastic scattering for the pri-

mary photoelectron distribution rather than for

the measured spectrum.

2.1. Shirley’s heuristic procedure

Shirley proposed [1] his method for ‘‘narrow’’

peaks, with a relatively small difference in the

intensity levels of the background-like regions on

either side of the main photoelectron peak of

interest. The precise algorithmic description intro-

duced by Proctor and Sherwood [3] should, in

principle, be the starting point of the today’s

implementations. The explanation [4] ‘‘. . .the
Shirley method. . . is thus proportional to the inte-

grated photoelectron intensity to higher kinetic en-

ergy’’ leads to an equation [5] for the Shirley

background intensity SSðEÞ, belonging to the pho-

topeak P ðEÞ, as a function of the electron energy E

SSðEÞ ¼ k �
Z þ1

E
P ðE0ÞdE0; ð1Þ

where k is an arbitrary constant. In practical

evaluation, the measured spectrum jðEÞ rather

than the primary spectrum P ðEÞ is available, so

Eq. (1) is computed in such a way that the primary
distribution P ðEÞ is approximated as the difference

of the measured intensity and some approximation

to the background SS;iðEÞ

SS;iðEÞ ¼ k �
Z þ1

E
ðjðE0Þ � SS;i�1ðE0ÞÞdE0: ð2Þ

As initial approximation, a constant back-

ground SS;0 is assumed. The procedure suggested

by Sherwood [4] iterates Eq. (2) until the back-

ground converges.

2.2. Tougaard’s cross-section function

The great invention by Tougaard [2] was that he

assumed the existence of a function that described

the probability of losing some energy due to an
inelastic collision in function of the lost energy. A

fortunate fact is that such functions can be both

theoretically derived and experimentally deter-

mined. The practical difficulty with applying these

cross-sections for spectrum evaluation is that the

inelastically scattered electrons measured in the
spectrum comprise electrons suffered quite differ-

ent number of collisions. With Tougaard’s ana-

lytical ingenuity, a proper method could be derived

that accounts for infinite number of collisions in

one single step. The Tougaard’s approach uses the

measured spectrum jðEÞ as a starting point, and in

his formalism the background STðEÞ due to ine-

lastically scattered electrons can be generated in
one single convolution step

STðEÞ ¼
Z þ1

E
KðE0 � EÞðjðE0Þ � ST;0ðE0ÞÞdE0; ð3Þ

where the ST;0ðE0Þ is the contribution from elec-

trons originating from peaks at higher kinetic

energies and is usually approximated by fitting a

straight line to the slope on the hight energy side of

the peak [6]. As a result, practical background

determination methods and energy loss cross-sec-
tion functions of analytic form could be derived [7].

2.3. Comparing Shirley’s and Tougaard’s proce-

dures

When scrutinizing these background correction

formulas, at least four important differences

should be noticed, in addition to their formal
similarity.

• The method of Shirley is an empirical method,

while the Tougaard method has an established

physical model background.

• The Shirley method uses the primary electron

distribution, while the Tougaard method uses

the measured spectrum as starting point,
although makes a simple linear background

correction step, i.e. the Shirley method operates

on electron spectrum not yet scattered in the so-

lid, while the Tougaard method uses the energy

distribution of the already scattered electrons.

• TheTougaardmethod is based on a cross-section

function, while the Shirley method does not in-

volve it. The classic Shirley method does not even
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mention if the probability of loosing some energy

does depend on the magnitude of the energy loss.

Themodel simply does not contain such an infor-

mation and does not evenmention the idea of the

energy loss cross-section function.
• The Shirley method should be iterated in order

to deliver the final background contribution,

while the Tougaard procedure delivers it as

the result of one single convolution step.
2.4. The contribution due to inelastic collisions

The method of taking into account the contri-
bution of primary electron distributions due to

inelastic scattering dates back to the first peak tails

by Castle et al. [8] and the 7-parameter tailed peak

shape by Sherwood [4]. The first analytical form

for a per-peak contribution satisfying the Shirley

conditions was given by V�egh [5]. Later, a

numerical procedure was derived [9] for generating

peak tails based on the inelastic cross-section
introduced by Tougaard.

In case of taking the primary electron distri-

bution as starting point [9] rather than the mea-

sured spectrum [2], one faces the practical

computational difficulty that in principle an infi-

nite number of convolutions with the inelastic

cross-section should be calculated. This disadvan-

tage can be abandoned in the Tougaard approach.
A primary photoelectron spectrum (say a single

photopeak) PðEÞ suffers inelastic collisions inside

the solid and the electron contribution S1ðEÞ due

to electrons suffered exactly one collision is de-

scribed by the convolution (*) of the primary dis-

tribution with the inelastic cross-section KðEÞ
S1ðEÞ ¼ P ðEÞ � KðEÞ: ð4Þ

The scattered electron can be subject of colli-

sion(s) again and in general, the distribution of

electrons scattered n times is described as

SnðEÞ ¼ Sn�1ðEÞ � KðEÞ ¼ P ðEÞ � KðEÞn; ð5Þ
where KðEÞn stands for the n-times self-convolu-

tion of KðEÞ. The total contribution due to scat-

tered electrons is given then by

SðEÞ ¼
X1
n¼1

SnðEÞ: ð6Þ
Although in finite energy regions met in prac-

tical spectrum evaluation this requirement can be

reduced to calculating the first few members of the

series [10], it still significantly increases both the

complexity and the execution time of the calcula-

tion. Efficient algorithms to calculate the multiply
scattered spectrum were derived for specific depth

profiles in [11].
3. The Shirley cross-section function

In order to derive the Shirley-equivalent cross-

section function, we have some physical conditions
the sought function needs to meet, a mathematical

condition that defines it and some experiences that

help to determine the parameters of the function.

3.1. Physical conditions

A cross-section function describes the proba-

bility of losing a certain amount of energy, so it
must be non-negative and finite all over its range

of interpretation. The electrons cannot gain energy

due to inelastic collisions, so at negative loss

energies its value must be exactly zero. One can

expect that very large energy losses have insignif-

icant probability, i.e. the value of the function

must disappear as the lost energy approaches

infinity, in the same way as the Tougaard-type and
the experimental cross-sections do. Conversely, at

low loss energies the value of the trial cross-section

function must be much higher than that of the

Tougaard type functions, in order to explain the

greatly different behavior of the two background

correction procedures near to photopeaks. The

integral of the cross-section function over the

interval [0,1] means the total probability of
loosing energy via inelastic collision, so it must

converge. The integral of both types of cross-sec-

tion must be comparable. Exact equivalence

cannot be expected, because in the practical eval-

uation the cross-sections are integrated over a

finite rather than an infinite energy range. The

background correction procedure uses the integral

over a finite energy range as a measure of the
inelastic background and so the integrals of these

two total cross-sections over a limited energy
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range need to be nearly equal, rather than the

integral over the energy interval [0,1].

3.2. Mathematical form

We have two independent derivations of the
Shirley-type inelastic background. Once the

empirical procedure results in Eq. (1) and through

summing up the contributions due to inelastically

scattered electrons we get Eq. (6). Because both of

these expressions represent the same physical ob-

ject, they must be equal and the sought KðEÞ
function must satisfy the condition:

k
Z þ1

E
P ðE0ÞdE0 ¼

X1
n¼1

P ðEÞ � KðEÞn: ð7Þ

This equation provides a possibility for finding

the ‘‘Shirley-equivalent inelastic energy loss cross-

section’’ function KðEÞ. Omitting the arbitrary

constant k and Fourier transforming Eq. (7), the

right side transforms into a geometrical series that
can be immediately summed up. After transform-

ing the result back one gets the final result that the

form of the kernel is

KðxÞ ¼ dðxÞ 1þ ix
1þ x2

: ð8Þ

We are obviously interested in the real part of

the function and because of the arbitrary constant

k in Eq. (1), some physical assumptions are also

needed to derive the exact function form. For

comparison with the Tougaard’s two-parameter

‘‘universal’’ cross-section function

KTðT Þ ¼
BT � T

CT þ T 2ð Þ2
; ð9Þ

the ‘‘Shirley-equivalent’’ cross-section function

derived by the author is sought in form

KSðT Þ ¼
BS

CS þ T 2
; ð10Þ

where T is the lost energy. Here and below, the

coefficients B and C are used in connection with

both the Shirley-equivalent scattering function and
the Tougaard scattering function. In order to

avoid confusion, the coefficients are subscripted

with the first letter of the corresponding method.
Note that because of the dissimilarity of the

function forms, BT and BS have different units.

It has been shown [9,12] that the integral of the

cross-section function has a physical meaning: it

gives the intensity of the first loss spectrum. In case
of the Tougaard ‘‘universal’’ cross-section function

its integral A is expressed as

A ¼ BT

2 � CT

: ð11Þ

Replacing BT and CT with the well-known val-

ues [7] or the ones found in the elaborate experi-

mental work by Seah [12] (or the ones adjusted to
the spectrum in question), one can calculate the

value of A. As it has been pointed out above, this

number shall be equal to the integral of the sought

function. This latter can be expressed as

A ¼ BSffiffiffiffiffiffi
CS

p � p
2
; ð12Þ

i.e. one can derive only the ratio of the coefficients

from the area of the function.

Fortunately, there exists some further analogy

between the shape of the Tougaard function and

that of the present one. The BS coefficient is the

‘‘scattering intensity’’ and CS describes the ‘‘dis-
tribution width’’ of the function. The Tougaard

function drops to half of its reached maximum

height at ca. 25–30 eV higher after reaching its

maximum. If one requires a similar feature for the

present trial function, one finds that CS should be

about 600–900 eV2 and correspondingly BS about

15–20 eV. These assumptions only serve as a rough

guide in guessing the magnitude, the correct values
of the coefficients need to be derived from experi-

mental spectra, a work in progress.

3.3. Performance

Using the function form and the estimated

coefficients, one can re-formulate the Shirley

background correction method (see Eq. (1)) again
in complete analogy with the Tougaard method

(see Eq. (3)) as

SSðEÞ ¼
Z þ1

E
KSðE0 � EÞ ðjðE0Þ � SS;0ðE0ÞÞdE0;

ð13Þ



Fig. 2. Different Shirley backgrounds to an Ag 3d spectrum:

the non-iterated Shirley method [1], the iterated Sherwood

method [3] and the present method.
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where KSðEÞ is the cross-section function given by

Eq. (10). In the followings Eq. (13) is called the

‘‘cross-section based’’ and Eq. (1) the ‘‘classic’’

Shirley background correction method. One can

test the features of the trial cross-section function
through comparing them directly or comparing

the resulting backgrounds.

In Fig. 1 the trial cross-section function is shown

together with Tougaard’s ‘‘universal’’ cross-sec-

tion. The present cross-section has its maximum at

zero loss energy and gives much more emphasize to

the very low energy inelastic energy losses as it

could be expected on the basis of theoretical
assumptions or experimental results. The line

‘‘ShirleyCS’’ is calculated with parameters

CS ¼ 2500, BS ¼ 27:8, which assumes exact agree-

ment of the integral with that of the Tougaard’s

function. When using the trial cross-section func-

tion for evaluating a measured Ag 3d spectrum (see

Fig. 2) the coefficients shall be adjusted to another

values (BS ¼ 36, CS ¼ 900), which results in using
the cross-section marked by ‘‘Shirley’’ in Fig. 1.

In Fig. 2 the backgrounds fitted to a measured

Ag 3d spectrum by the different Shirley methods are

compared. The classic Shirley method with no

iteration [1] does not provide a satisfactory back-

ground, because the difference in the background

levels is too big here. After iterating that initial

background as described in [3], the method pro-
duces a perfect Shirley background. The cross-sec-
Fig. 1. Comparing the present 1=ð1þ x2Þ-type cross-sections

(the one resulting the same inelastic loss than the Tougard’s

‘‘universal’’ function and the one with parameters resulting in a

reasonable fit to the background on the left side of the Ag 3d

peak shown in Fig. 2) to the Tougaard’s ‘‘universal’’ function

[7].
tion based Shirley background (generated in the

sameway as one produces a Tougaard background)

is nearly identical with the classic background, if the

parameter BS is adjusted properly. Note that the

parameters of the backgrounds shown in Fig. 2 are
slightly changed from their ‘‘best’’ values in order to

make the individual curves visible.

The present results strongly contradict to the

former statements on the shape of this cross-sec-

tion function like in [13]: ‘‘Shirley’s method is tra-

ditionally used but does not represent the accurate

energy loss spectrum responsible for the peak

background to be subtracted: it is assumed that the
probability for one electron of energy E to lose an

energy T does not depend on E or on T ’’. The pre-

sented cross-section function proves that the

Shirley phenomenon can be explained assuming that

the inelastic scattering process is governed by an

inelastic cross-section function. The present paper

does not state that the real inelastic energy loss

cross-section can be described with the derived
function, rather it explains that such a cross-section

function is implicitly assumed when one uses the

Shirley background correction procedure.

3.4. Peak tails

As has been pointed out earlier [5,8,9], attach-

ing the contributions due to inelastically scattered
electrons in form of ‘‘tails’’ to the individual

photopeaks results in some advantages. One can



Fig. 3. The one-step linear convolution algorithm for calcu-

lating in one-step the tailed peak shape due to inelastic scat-

tering contributions.
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derive cross-section based photopeak tail for the

present Shirley cross-section in the same way as it

was done for the Tougaard cross-section [9]. As

Eq. (6) shows, the total contribution due to scat-

tered electrons is given by a sum, i.e. in principle it

should be calculated trough convoluting the pri-
mary distribution with the inelastic energy loss

cross-section function a large number of times and

summing up the contributions.

In the linear convolution algorithms, the con-

volved array does not change during the convo-

lution and the returned result contains the array

convolved exactly once. In this special case the

features of the inelastic scattering process allow to
make modifications [9] on the algorithm due to

which the returned result will contain the sum of

all contributions up to infinite order, i.e. Eq. (6)

can be calculated in one single linear-convolution

like step as outlined on the flow chart in Fig. 3.

The key points here are the shaded rectangles.

Since the electrons can not gain energy during

inelastic collisions (i.e. the cross-section function is
exactly zero for negative loss energies), if one cal-

culates the contribution due to the inelastic collision

of electrons with energy Ei, it surely will not affect

contributions at energies higher than Ei. Because of

this, if one starts the calculation at the highest

available energy and proceeds towards the lower

energy points, the already calculated contributions

will not change any more. It is known from the
physics of the scattering that the probability of

being scattered does not depend on the previous

energy losses, i.e. scattered electrons with their new

energy are to be accounted immediately when cal-

culating the contributions at energies Ej, j < i.
Increasing the amount of the electrons at electron

energy Ej with the amount of scattered electrons

from higher energies accounts for this physical ef-
fect and so after repeating the steps until the lowest

energy reached, the total contribution due to all

inelastic collisions will be produced. The mathe-

matical correctness of this one-step procedure was

proved byGraat et al. [14] using Fourier-transform.

In Fig. 4 different peak tails due to inelastic

collisions (calculated using the present method and

the ones in [5,9]) are added to a peak. As shown, in
case of the Shirley-type backgrounds the tail is

constant in the low energy side of the spectrum, at
reasonable distance from the peak. As expected, in

the vicinity of the photopeak the shape of the tail
depends strongly on the parameters of the cross-

section function.
4. Summary

Although the Shirley background correction

method is one of the most widely used spectrum



Fig. 4. Comparing tailed peaks generated assuming different

loss cross-sections: the ‘‘classic’’ Shirley tail [5], the Tougaard

tail [9], and the present method, using two different sets of

coefficients, leading to different background shape near to the

photopeak.
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evaluation methods, its physical details have not

been discovered until now and even some misbe-

lieves have been published about it. Introducing
the Shirley-equivalent cross-section makes this

picture cleaner and opens several research tasks.

The present results prove that the Shirley pheno-

menon can be explained assuming that the inelastic

scattering process is governed by an inelastic cross-

section function and that such an inelastic energy

loss cross-section function is implicitly assumed

when one uses the Shirley background correction
procedure.

The analysis of the cross-sections might help in

discovering some systematic errors due to incorrect

background determination when evaluating the

asymmetry of the photopeaks or separating intrin-

sic/extrinsic contributions to the primary photo-

peak. As elegantly pointed out by Cohen

Simonsen et al. [15] in connection with the Toug-
aard method, the inelastic contribution of type Eq.

(6) comprises only the extrinsic energy loss con-

tributions, the intrinsic energy loss cannot be ac-

counted in this way. The introduced cross-section

function puts the Shirley evaluation method in

complete analogy with the Tougaard evaluation

method. The mathematical techniques are abso-

lutely identical, the only difference is in the func-
tional form of the assumed cross-section. Because

of this, the Shirley method removes only the
extrinsic energy loss contributions, too. Methods

like the one published by Salvi and Castle [16]

determine the difference due to the different cross-

section functions assumed by the two different

background correction methods rather than the

intrinsic energy loss alone.
The analysis of the functional form of the cross-

section function in comparison with that of the

Tougaard’s function reveals why the Tougaard and

Shirley background correction methods produce so

very much different background height in the vicinity

of the photopeaks. The resulting cross-section form

allows to verify if the conditions of using the Shirley

background correction procedure apply. The de-
rived cross-section function can be compared to

the experimentally determined ones for materials

where the Shirley method is unexpectedly successful.

Although the method shall yet be tested on

experimental spectra to discover the dependence of

values of coefficients BS and CS on material fea-

tures, its application for practical spectrum eval-

uation seems to be very promising. The procedures
mentioned in this paper are implemented and built

into the freely available spectrum evaluation pro-

gram wxEWA [17], so the interested reader can try

the procedures on his own measured data.
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